Lesson 1

Asexual Reproduction

Asexual Reproduction

 Produces <u>genetically identical</u> offspring from <u>only</u> one single

0

Types of Asexual Reproduction

- Vegetative Propagation
- Parthenogenesis
- Sporulation
- Binary Fission
- Regeneration
- Budding

1.Binary Fission

- Organism divides in half (<u>EQUALLY</u>), resulting in 2 new organisms
- Ex. Unicellular organisms (Paramecia, Amoeba, Bacteria)

2.Budding

- Similar to fission but cytoplasmic division is unequal
- Ex. Unicellular (yeast) & multicellular(hydra)

3.Sporulation

- Parent releases microscopic <u>spores</u> (reproductive cells)
- New offspring develop with right temp & moisture
- Ex: Bread mold, mushrooms, some plants

Video - Fern Spores

4.Regeneration

- Development of <u>entire new organism</u> from part of original organism
- Also refers to replacement of lost structure
- Ex. Starfish

5.Vegetative Propagation

- New <u>plants</u> can develop from roots, stems, or leaves of the parent plant
- Ex: Cuttings of a plant, tubers of a potato, runners of strawberry pants, bulbs of onions

6.Parthenogenesis

- An unfertilized egg develops into a new individual
- Occurs in some <u>insects</u> and arthropods (daphnia), some reptiles & fish

Video - Shark Virgin Birth

What type of asexual development is this?

Budding

Sexual Reproduction

Asexual Reproduction

ex: humans, fish, plants (flowers)

Requires sperm and egg

Involves 2 parents

offspring <u>NOT</u> identical to parent produce offspring Involve cell division ex: bacteria, ameoba, yeast, plants

no sperm and egg required

only **1** parent involved

offspring **IDENTICAL** to parent

Lesson 2

Chromosome Structure Cell Cycle Mitosis Stages

Cell Division

Daughter Cells

Why do it?

VIDEO- cell division overview

Video - Mitosis under a microscope (short)

The Cell Cycle (the "life" of a cell)

- Is mostly in <u>INTERPHASE</u> the time when a cell...
- •Grows (G1)
- Replicates its DNA & organelles (S)
- Prepares for division (G2)

Cell division is needed for...

- <u>Growth</u> of the organism (Mitosis)
- <u>Repair</u> of damaged cells (Mitosis)
- <u>Reproduction</u> (Mitosis or Meiosis)

Mitosis consists of <u>4 phases</u> (division of the nuclear DNA):

- Prophase
- •<u>M</u>etaphase
- •<u>A</u>naphase
- •<u>T</u>elophase

Mitosis is followed by <u>CYTOKINESIS</u>

- division of the cytoplasm & cell membrane

Chromosome Replication

The most important step of cell division is the **REPLICATION / DUPLICATION** of chromosomes and the equal separation of DNA between daughter cells!

<u>Chromosome</u> <u>Structure</u>

Centromere attaches 2 chromatids

Identical Sister Chromatids

Cells can divide in two different ways...

Both Mitosis AND Meiosis involve distinct stages involving specific changes inside the cell

P.M.A.T.

- Prophase
- •<u>M</u>etaphase
- •<u>A</u>naphase
- <u>T</u>elophase

Mitosis Animation (details of each phase) (stop at 1:43)

INTERPHASE

- growth
- normal cell functions
- chromosomes replicate to prepare for cell division (are spread out in nucleus as chromatin)

PROPHASE

- spindle fibers form
- centrioles begin to move to opposite poles (ends)
- nuclear membrane & nucleolus break down (degenerate)
- chromosomes condense / coil (become visible)

METAPHASE

- spindle fibers attach at each centromere
- Alignment of chromosomes on equatorial plane (middle)

Metaphase

ANAPHASE

- chromatids are pulled <u>apart</u> by spindle fibers (Disjunction)
- I from each pair
 - moves to opposite poles

TELOPHASE

- nuclear membranes reform
- 2 separate but <u>identical</u> nuclei
- each has a full set of single stranded chromosomes
- Mitosis is complete

CYTOKINESIS

- Division of cytoplasm and other organelles Forms <u>2 identical</u>
 - daughter cells

Lesson 3

Recap Mitosis phases
Meiosis phases
Compare to Mitosis

Mitosis in Animal Cells

Label each stage with the proper name.

NOTE: NO CENTRIOLES IN PLANT CELLS

Mitosis in Plant Cells

Label each stage with the proper name.

2 daughter cells

Metaphase

Interphase

Anaphase

<u>Cell plate</u> forms to become <u>cell wall</u>

How many chromosomes	Organism HUMAN
here?	Camel
nave?	Goat
46 (diploid # 2n)	Guinea pig
	Bat
How many chromosomes	Squirrel
do human gametes	Alligator
have?	Chicken
23 (haploid # n)	King crab
	Fruit fly
	Pea
why must gametes have	Apple
the haploid # of	Potato
chromosomes?	Soybean
So the diploid # is	Lettuce
restored at fortilization	Rice
	Leopard Frog

Organism	Diploid # (2n)	Haploid # (n)
HUMAN	46	23
Camel	70	35
Goat	60	30
Guinea pig	64	32
Bat	44	22
Squirrel	40	20
Alligator	32	16
Chicken	78	39
King crab	208	104
Fruit fly	8	4
Pea	14	7
Apple	34	17
Potato	48	24
Soybean	40	20
Lettuce	18	9
Rice	24	12
Leopard Frog	26	13

Meiosis II (same as Mitosis)

(Source: http://www.parents.com/pregnancy/getting-pregnant/genetics/genetics-and-your-baby/)

Independent Assortment Possibility 2

MEIOSIS VIDEO

Difference between mitosis and meiosis – YouTube

Biology : Meiosis - cell division - YouTube

Mitosis	Meiosis
1 division \rightarrow 2 daughter cells	2 divisions \rightarrow 4 daughter cells
Genetically identical	Genetically varied
Chromosome number is maintained (diploid 2n)	Chromosome number is halved (haploid n)
Asexual reproduction	Sexual Reproduction
Ex. Skin repair, zygote cleavages	Ex. Gamete (sperm & egg) production in gonads
"single file," NO crossing over	in pairs (synapsis), YES crossing over occurs

Sexual Reproduction

produce

offspring

Involve

cell

division

Asexual Reproduction

ex: humans, fish, plants (flowers)

Requires sperm and egg

Involves 2 parents

offspring <u>NOT</u> <u>identical</u> to parent

> requires <u>MEIOTIC</u> cell division

ex: bacteria, ameoba, veast, plants

no sperm and egg required

only **1** parent involved

DNA must replicate offspring IDENTICAL to parent

> requires <u>MITOTIC</u> cell division

Lesson 4

Gametogenesis Spermatogenesis, Oogenesis

STAGES OF MEIOSIS

Name _____

Number the following diagrams of a first meiotic division in the proper order. Label each phase correctly as prophase I, metaphase I, anaphase I or telophase I.

Do the same for the diagrams of the second meiotic division. Label each phase correctly as prophase II, metaphase II, anaphase II, telophase II.

Activity - Piecing together MEIOSIS!

When instructed, put the pieces in your envelope in order to represent the process of meiosis

NOTE – it is a summary, NOT all phases are shown

Identify / describe:
Replication
Synapsis / Tetrad
Crossing over

		Mitosis	Meiosis
1.	no pairing of homologs occurs	Χ	
2.	two divisions		X
3.	four daughter cells produced		X
4.	associated with growth and asexual reproduction	. X	
5.	associated with sexual reproduction		X
6.	one division	X	
7.	two daughter cells produced	Χ	
8.	involves duplication of chromosomes	Χ	X
9.	chromosome number is maintained	X	
10.	chromosome number is halved		Χ

11,	crossing over between homologous chromosomes may occur		X
12.	daughter cells are identical to parent cell	X	
13.	daughter cells are not identical to parent cell		X
14.	produces gametes		- X
15.	synapsis occurs in prophase		X

Spermatogenesis

- meiosis in male testes to produce sperm (gametogenesis)

<u>Oogenesis</u>

- meiosis in female ovary to produce mature egg cell (gametogenesis)

Which diagram represents binary fission?

1

Q. Which process is represented by the diagram below?

- An adaptation for reproduction in most terrestrial vertebrates is
 (1) internal fertilization
 (3) mitosis
 (4) vegetative propagation
 - 4. Which sequence represents the correct order of events in the development of sexually reproducing animals?
 - fertilization → cleavage → differentiation → growth
 - (2) cleavage → fertilization → growth → differentiation
 - (3) growth → cleavage → fertilization → differentiation
 - (4) fertilization → differentiation → cleavage → growth

Which is the correct sequence of these stages? (1) $A \rightarrow B \rightarrow C \rightarrow D$ (3) $C \rightarrow B \rightarrow D \rightarrow A$ (2) $B \rightarrow D \rightarrow C \rightarrow A$ (4) $D \rightarrow B \rightarrow A \rightarrow C$

- Which statement best describes the division of the cytoplasm and the nucleus in budding?
 - Both the cytoplasm and the nucleus divide equally.
 - (2) The cytoplasm divides unequally, but the nucleus divides equally.
 - (3) The cytoplasm divides equally, but the nucleus divides unequally.
 - (4) Both the cytoplasm and the nucleus divide unequally.
- Rhizopus, a bread mold, usually reproduces asexually by

 (1) budding
 (2) sporulation
 (3) regeneration
 (4) fission
 - In sexually reproducing species, doubling of the chromosome number from generation to generation is prevented by events that take place during the process of

 (1) gametogenesis (2020515)
 (3) nondisjunction
 (4) fertilization

- Which pair of gametes can unite to produce a zygote that will develop into a normal human male embryo?

- 13. During meiotic cell division, the process in which homologous pairs of chromosomes separate and move apart is known as Δ
 - internal fertilization
 - (2) regeneration

binary fission disjunction

Lesson 5

Malfunctions of cell division Cancer Nondisjunction

Malfunction of Cell Division - Cancer

- Uncontrolled, rapid mitotic cell division
- Can occur anywhere that cells divide
- Forms a tumor (mass of cancerous cells)
- Can be caused by mutagenic/carcinogenic agents (ex. UV radiation, xrays)
- Some forms have genetic links

Video - normal vs. cancer cell growth Brainpop - Cancer

Cancer Statistics

Estimated New Cases

			Males	Females		
Prostate	180,890	21%		Breast	246,660	29%
Lung & bronchus	117,920	14%	1	Lung & bronchus	106,470	13%
Colon & rectum	70,820	8%		Colon & rectum	63,670	8%
Urinary bladder	58,950	7%		Uterine corpus	60,050	7%
Melanoma of the skin	46,870	6%		Thyroid	49,350	6%
Non-Hodgkin lymphoma	40,170	5%		Non-Hodgkin lymphoma	32,410	4%
Kidney & renal pelvis	39,650	5%		Melanoma of the skin	29,510	3%
Oral cavity & pharynx	34,780	4%		Leukemia	26,050	3%
Leukemia	34,090	4%		Pancreas	25,400	3%
Liver & intrahepatic bile duct	28,410	3%		Kidney & renal pelvis	23,050	3%
All Sites	841,390	100%		All Sites	843,820	100%

addition of the second s

Estimated Deaths

			Males	Females	
Lung & bronchus	85,920	27%		Lung & bronchus 72,160 2	6%
Prostate	26,120	8%		Breast 40,450 1	4%
Colon & rectum	26,020	8%		Colon & rectum 23,170	8%
Pancreas	21,450	7%		Pancreas 20,330	7%
Liver & intrahepatic bile duct	18,280	6%		Ovary 14,240	5%
Leukemia	14,130	4%		Uterine corpus 10,470	4%
Esophagus	12,720	4%		Leukemia 10,270	4%
Urinary bladder	11,820	4%		Liver & intrahepatic bile duct 8,890	3%
Non-Hodgkin lymphoma	11,520	4%		Non-Hodgkin lymphoma 8,630	3%
Brain & other nervous system	9,440	3%		Brain & other nervous system 6,610	2%
All Sites	314,290	100%		All Sites 281,400 10	0%

FIGURE 1. Ten Leading Cancer Types for the Estimated New Cancer Cases and Deaths by Sex, United States, 2016. Estimates are rounded to the nearest 10 and cases exclude basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder.

Cancer Treatments

5 STANDARD *treatment options:*

Malfunction of Cell Division - Nondisjunction

- Chromosomes fail to separate during meiosis (do not "disjoin")
- Results in extra or missing chromosomes in the gametes produced
- Can cause genetic disorders if malformed gametes are used in fertilization

Malfunction of Meiosis - Nondisjunction

Trisomy (2n+1) – disorders with 1 extra chromosome Ex. Down Syndrome (extra chromosome 21) Klinefelter Syndrome (male with extra X chromosome)

Malfunction of Meiosis - Nondisjunction

Monosomy (2n-1) – disorder with 1 missing chromosome Ex. Turner Syndrome (female with only 1 X chromosome)

Video - Chromosome Nondisjunction Animation

Mitosis	Meiosis
One division (PMAT 1x)	Two divisions (PMAT 2x)
2 daughter cells produced	4 daughter cells produced
Genetically identical	Genetically varied
Chromosome number is maintained (diploid 2n)	Chromosome number is halved (haploid n)
Asexual reproduction	Sexual Reproduction
Ex. Skin repair, zygote cleavages	Ex. Gamete (sperm & egg) production in gonads
Chromosomes line up "single file"	Chromosomes line up in pairs (synapsis)
NO crossing over	YES crossing over occurs