Lesson 1

Quiz (short)
Cell cycle
Chromosomes
Mitosis phases

Cell division is needed for...

- Growth (Mitosis)
- Repair (Mitosis)
- Reproduction (Meiosis)

Mitosis consists of 4 phases (division of the nuclear DNA):
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase

A human cell nucleus contains 46 chromosomes (gametes only 23)

Chromosome is ready for chromatid chromatida division

double stranded

Telomere

Contromery
attaches 2 sister chromatids

Telomers ends of chromosome

Chromosome
Structure

Identical Sister Chromatids

Cells can divide in two different ways... MITOSIS MEIOSIS

U.S. National Library of Wedicine

INTERPHASE

Interphase
G1, S, G2 phases
NOT part of mitosis
growth

- normal cell functions
- chromosomes replicate to prepare for cell division (are spread out in nucleus as chromatin)

Spindle

 forming

PROPHASE

- spindle fibers form centrioles begin to migrate / move to opposite poles (ends)
- nuclear membrane \& nucleolus break down (degenerate)
- chromosomes condense / coil (become visible)

METAPHASE

- spindle fibers attach at each centromere
- Alignment of chromosomes on equatorial plane (middle)

ANAPHASE

chromatids are pulled apart by spindle fibers (Disjunction) 1 from each pair moves to opposite poles

Telophase

TELOPHASE

- nuclear membranes reform
- 2 separate but identical nuclei
- each has a full set of single stranded chromosomes
- Mitosis is complete

CYTOKINESIS

- Division of
cytoplasm and other organelles Forms 2 identical daughter cells

Mitosis in Animal Cells

Label each stage with the proper name.

2 daughter cells

Metaphase

Telophase

NOTE: NO CENTRIOLES IN Mitosis in Plant Cells
Label each stane with the nroner name.

Prophase

Interphase

Anaphase

Cell plate forms to become cell wall

Cytokinesis

Spindle forming

Prophase
$\sqrt{3}$

Telophase

Lesson 2

Meiosis differences from Mitosis

Mitosis in Animal Cells

Label each stage with the proper name.

2 daughter cells

Metaphase

Telophase

NOTE: NO CENTRIOLES IN Mitosis in Plant Cells
Label each stane with the nroner name.

Prophase

Interphase

Anaphase
Cell plate forms to become cell wall

Telophase

Cytokinesis

Spindle Chromosome

Prophase

$\sqrt{3}$

Telophase

Cells can divide in two different ways...

 MITOSIS

 MITOSIS}

U.S. National Litrany of Wedicine

Organism	Diploid chromosome \# $(2 n)$ in body cells	Haploid chromosome \# (n) in gametes
Human *(memorize)	46	23
Goat	60	30
Guinea pig	64	32
Bat	44	22
Squirrel	40	20
Alligator	32	16
Chicken	78	39
King crab	208	104
Fruit fly	8	4
Pea	14	7
Apple	34	17
Potato	48	24
Soybean	40	20
Lettuce	18	9
Rice	24	12
Leopard Frog	26	13

Meiosis I

Line up as tetrads

Meiosis II (same as Mitosis)

	Mitosis	Meiosis
In what types of cells does it occur?	Body Cells (Somatic Cells)	Cells in Gonads that make Gametes
What type of reproduction is this process involved in?	Asexual	Sexual
How many divisions occur?	One (PMAT 1x)	Two (PMAT 2x)
Number of daughter cells produced?	2 daughter cells	4 daughter cells
Chromosome number of daughter cells produced?	Diploid \# (2n) =46	Haploid \# (n) = 23
Genetic comparison with the original cell?	Identical	Varied
Does crossing over occur?	No	Yes

Comparison of Mitosis and Meiosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.1 Comparison of Mitosis and Meiosis

Mitosis	Meiosis
One division	Two divisions
Two daughter cells per cycle	Four daughter cells per cycle
Daughter cells genetically identical	Daughter cells genetically different
Chromosome number of daughter cells same as that of parent cell (2n)	Chromosome number of daughter cells half that of parent cell (1n)
Occurs in somatic cells	Occurs in germline cells
Occurs throughout life cycle	In humans, completes after sexual maturity
Used for growth, repair, and asexual reproduction	Used for sexual reproduction, producing new gene combinations

Meiosis

- Cell division that produces gametes with half the number of chromosomes
. Occurs in germline cells found in the gonads
- Maintains the chromosome number of a species over generations via fertilization
- Ensures genetic variability via the processes of independent assortment and crossing over of chromosomes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Haploid daughter cells

Independent Assortment

Possibility 1

Possibility 2

Two equally probable arrangements of chromosomes at metaphase I

Combination 1 Combination 2

Crossing-over

Meiosis consists of two divisions (PMAT 2x)

- Meiosis I = The reduction division
- Reduces the number of chromosomes from 46 to 23 (still double-stranded)
- Meiosis II = The equational division
- Produces four cells with single-stranded chromosomes
Note: Each division has the 4 phases (PMAT)
Prophase, Metaphase, \underline{A} naphase, Telophase

Meiosis

Lesson 3

short period (fill in blank notes)

Steps of Meiosis
Gametogenesis

- spermatogenesis
- oogenesis

Meiosis

- Cell division that produces gametes with half the number of chromosomes
. Occurs in germline cells found in the gonads
- Maintains the chromosome number of a species over generations via fertilization
- Ensures genetic variability via the processes of independent assortment and crossing over of chromosomes

Meiosis I

Prophase I (early)

Synapsis and crossing over occurs.

Prophase I (late)
Chromosomes condense, become visible. Spindle forms. Nuclear envelope fragments. Spindle fibers attach to each chromosome.

Metaphase I

Paired homologous chromosomes align along equator of cell.

Anaphase I

Homologous
chromosomes separate to opposite poles of cell.

Telophase I

Nuclear envelopes partially assemble around chromosomes. Spindle disappears. Cytokinesis divides cell into two.

Prophase I

- Homologs pair-up and undergo crossing over
- Nuclear membrane breaks down
- Chromosomes condense
- Spindle forms
- Paired chromosomes (homologs) exchange genetic information
- Results in genetic variation in each gamete produced
- Occurs during synapsis in Prophase I

Metaphase I

- Homologous pairs align along the cell's equator (double file)

Random alignment pattern determines the independent assortment of chromosomes

Independent Assortment

Anaphase I

- Homologs separate and move to opposite poles of the cell
. Sister chromatids remain attached at their centromeres

Telophase I

- Nuclear envelope (membrane) reforms
- Spindle disappears
- Cytokinesis divides the rest of the cell into two

Interkinesis

- A short interphase between the two meiotic divisions
- Chromosomes unfold into very thin threads

- However, DNA is NOT replicated a second time

Prophase II

Metaphase II

- Chromosomes condense and become
visible again
- Spindles form
- Nuclear envelope degenerates

. Chromosomes align along the equator

Anaphase II

Telophase II

- Centromeres divide
- Sister chromatids separate to opposite cell poles
- Nuclear envelope (membrane) reforms
- Chromosomes uncoil
- Spindles disappear

Results of Meiosis

- Four haploid cells containing a single copy of the genome (23 chromosomes each)
- Each cell is unique - carries a different assortment of genes and chromosomes

Four nonidentical haploid daughter cells

Gametogenesis

- The process in which cells undergo meiosis to form gametes

Spermatogenesis

Spermatogenesis

- Occurs in the seminiferous tubules of the testes, beginning at puberty continuing throughout the man's life
- A diploid spermatogonium (stem cell) divides by mitosis to produce another stem cell and a cell that specializes into a primary spermatocyte
- In meiosis I, the primary spermatocyte produces two haploid secondary spermatocytes
- In meiosis II, each secondary spermatocyte produces two haploid spermatids
- Spermatids then mature into tad-pole shaped spermatozoa (4 sperm cells in total)

Spermatogenesis

Sperm Structure

- Acrosome on head contains digestive enzymes to help penetrate eqg
- Nucleus contains $\underline{23}$ chromosomes
- Mitochondria in midpiece provide energy
- Tail provides motility

Oogenesis
 First polar body

 may dividePolar bodies die

Mitosis

(haploid)

Secondary
oocyte
(haploid)

Oogenesis

Unlike spermatogenesis, oogenesis is a discontinuous process
Meiosis begins during fetal development of female

- Oocytes pause development at prophase I until puberty
- After puberty, meiosis I continues in one or several oocytes each month but halts again at metaphase II
- Meiosis is only completed if the ovum is fertilized

Oogenesis

A diploid oogonium (stem cell) divides by mitosis to produce another stem cell and a cell that specializes into a primary oocyte
In meiosis I, the primary oocyte divides unequally forming a small polar body and a large secondary oocyte
In meiosis II, the secondary oocyte divides to form another polar body and 1 mature haploid ovum

Oogenesis

Lesson 4

Practice Questions \& Review

Spermatogenesis - meiosis in male testes
(seminiferous tubules) to produce sperm
Primary
Spermatocyte
Spermatagonium

Stem cell in the testes

Secondary Spermatocyte

Oogenesis

- meiosis in female ovary to produce mature egg cell

STAGES OF MEIOSIS

Name

Number the following diagrams of a first meiotic division in the proper order. Label each phase correctly as prophase I, metaphase I, anaphase I or telophase I.

Metaphasel Prophasel
 Anaphase I
 Telophase I

4

Do the same for the diagrams of the second meiotic division. Label each phase correctly as prophase II, metaphase II, anaphase II, telophase II .

