
Non-Mendelian Inheritance

Blood Types Video (Bozeman Science Lecture) http://www.youtube.com/watch?v=KXTF7WehgM8

Mendelian Inheritance

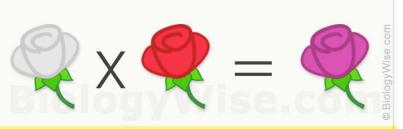
- Term used to describe the basic principles of inheritance for traits that are not inherited in complicated ways.
 - $\hfill\square$ Ex. Traits that are either dominant or recessive

<u> 3 Basic Mendelian Principles / Laws</u>

1. Law of Dominance

- One factor in a pair of a trait dominates over the other unless both are recessive
- 2. Law of Segregation
 - During gamete production the 2 copies of "hereditary factors" segregate so offspring acquire 1 from each parent
- 3. Law of Independent Assortment
 - Each pair of "hereditary factors" separates independently of the others

Non-Mendelian Inheritance

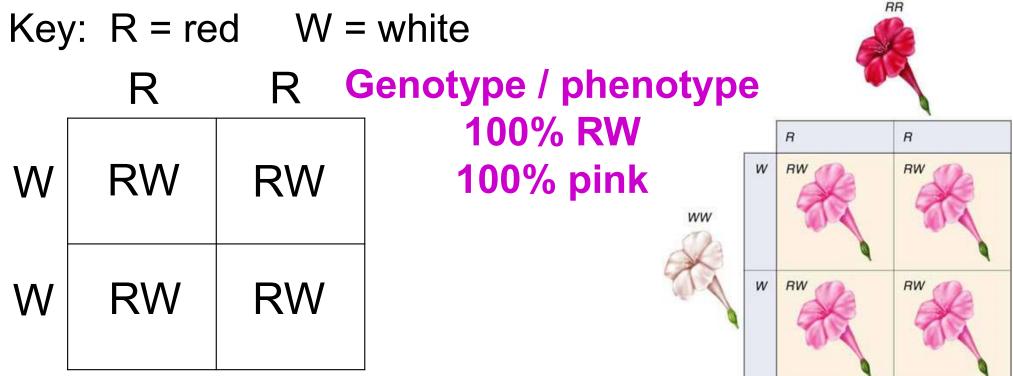

- There are many exceptions to the principles we have learned with basic Mendelian genetics.
 - □Incomplete Dominance
 - □Codominance
 - □Multiple Alleles
 - Polygenic Inheritance

Video - Incomplete Dominance vs Codominance

Incomplete Dominance

- Heterozygous genotype results in blending
- Neither trait is dominant
- Represented by 2 different capital letters
- Ex- Japanese four o'clock flowers

Example of Incomplete Dominance



Crossing between a red rose and a white rose producing a pink phenotype.

Practice Incomplete Dominance:

A red Japanese four o'clock is crossed with a white Japanese four o'clock:

Practice Incomplete Dominance:

Cross two pink four o'clocks:

	R	W
R	RR	RW
W	RW	WW

genotypes / phenotypes 25% RR = red 50% RW = pink 25% WW = white Ratio = 1:2:1

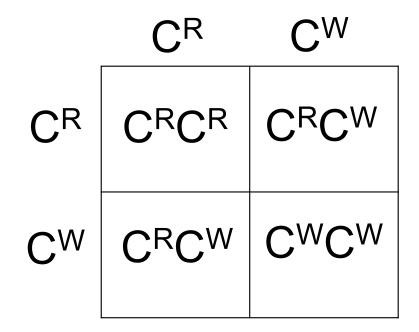
<u>Codominance</u>

- Both traits are expressed because both are dominant.
- Ex- Roan coat color in cattle
 - Express both white and red hairs
- Use "C" in genotypes

Codominance in Shorthorn cattle

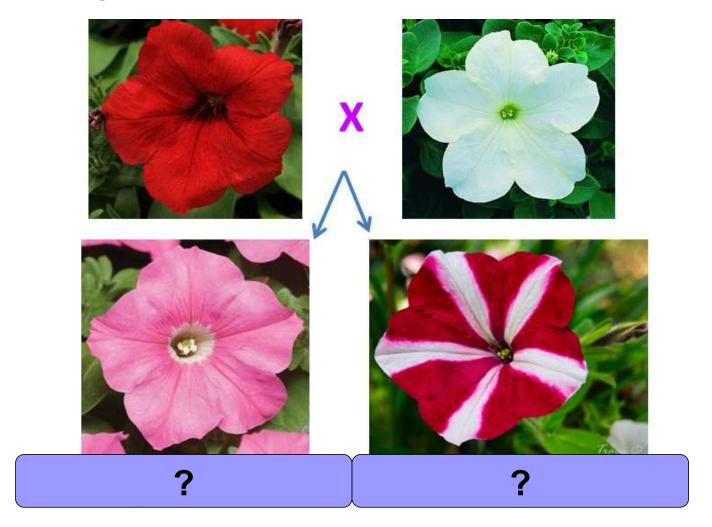
Practice Codominance:

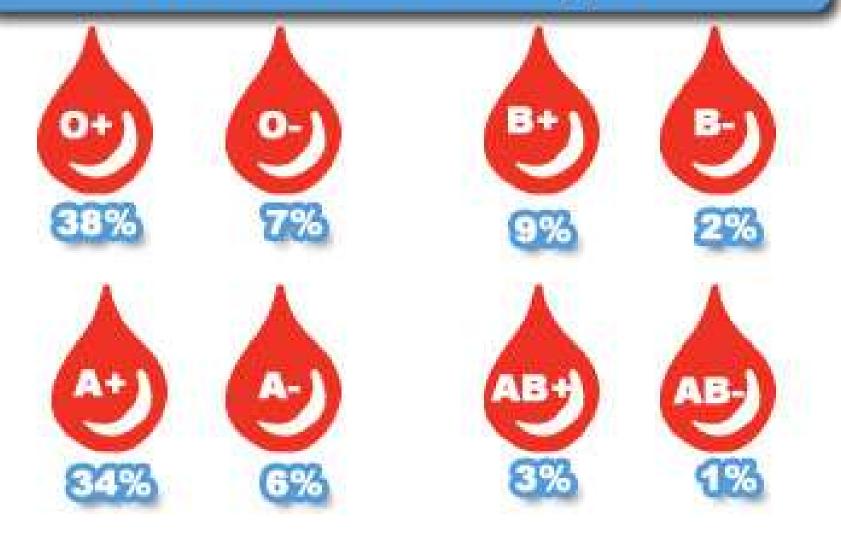
- Cross a red cow with a white cow:
- Key: C^{R} = red C^{W} = white Offspring genotype


	CW	CW
CR	CRCW	CRCW
CR	CRCW	CRCW

Offspring genotypes / phenotypes

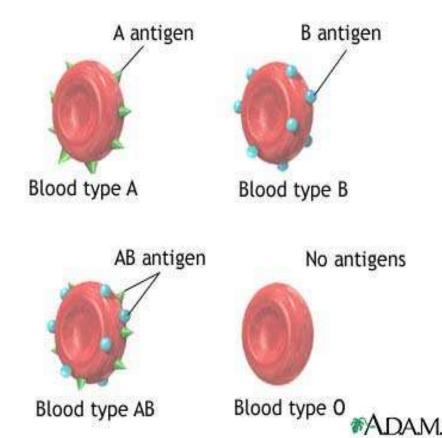
100% Roan coats


Practice Codominance:Cross two roan cattle:


Genotypes / phenotypes 25% C^RC^R = red coats 50% C^RC^W = roan coats 25% C^WC^W = white coats

Ratio = 1:2:1

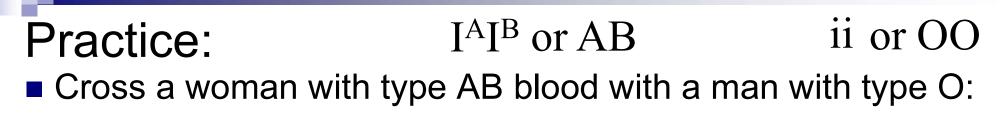
Is it Incomplete dominance or Codominance?

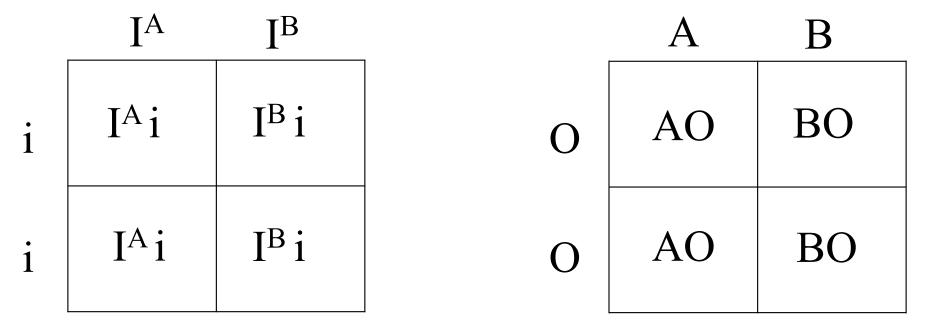


What's Your Blood Type?

Multiple Alleles

- When there are more than 2 allelic pairs for a gene.
- Ex-blood groups in humans
 - 4 different blood types:
 - A, B, AB, O
 - Determined by specific antigens on the surface of the red blood cell

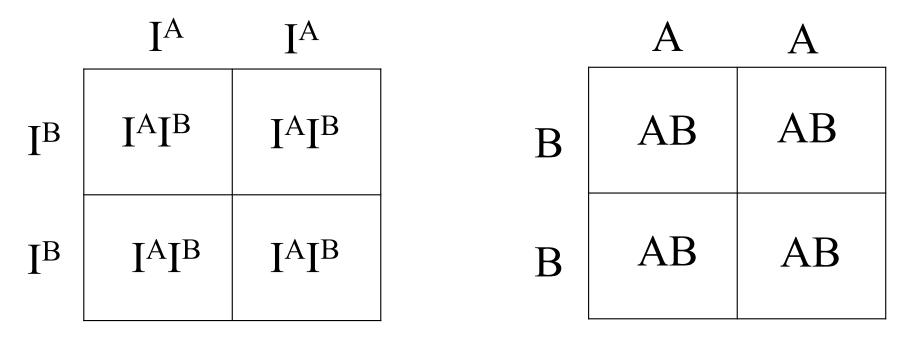



Blood type is determined by 3 different alleles: A, B, & O

A & B are codominant, O is recessive Phenotype / Genotype(s)

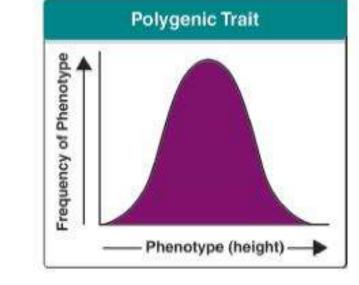
- Type A: I^AI^A, I^Ai or AA, AO
- <u>Type B</u>: $I^{B}I^{B}$, $I^{B}i$ or BB, BO
- <u>Type AB</u>: $I^{A}I^{B}$ or AB
- <u>Type O</u>: ii or OO

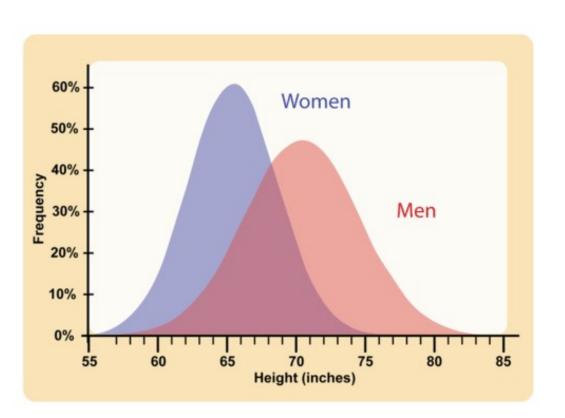
<u>Video -</u> <u>Multiple</u> <u>Alleles</u> (Amoeba <u>Sisters)</u>



<u>Results</u>: 50% Type A, 50% Type B (all heterozygous)

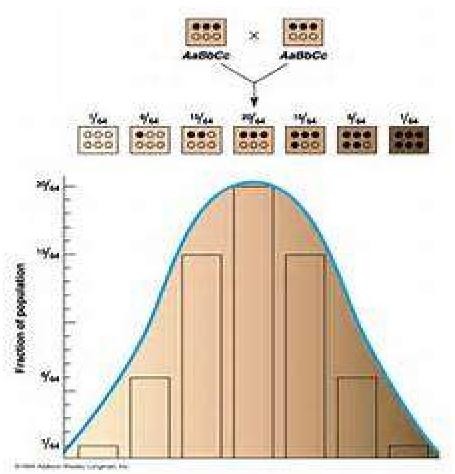
Practice:


Cross a man with type A (homozygous) blood with a female who is type B (homozygous):


Results: 100% Type AB

Polygenic Inheritance

- Characteristics that vary along a continuum, resulting from a blending of <u>several separate genes</u>
 - Ex: skin color, eye color, height



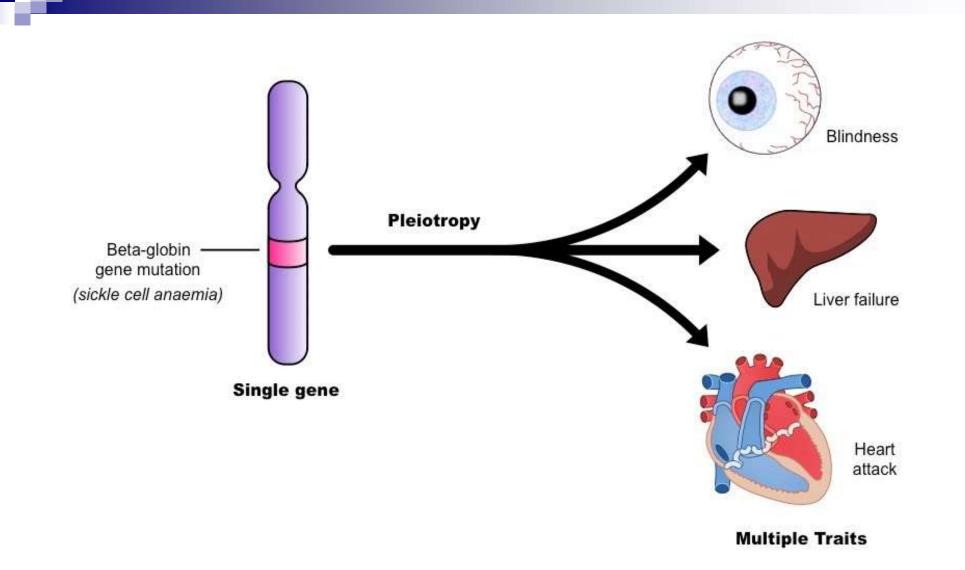
Amoeba Sisters Polygenic Traits (start at 3:20)

<u>height</u>

skin color

Ex. Skin color

000 × 000 AnphCa AaDhCa


Non-identical twins

		Sperm							
		1/8 000	1∕8 ●∞	1/8 000	1/8 ∞●	1/8 •••	1/8 ••••	1/8	1/8
	1/8 000	888	***	888	888			800	
	1/8 •00	:	::::	***	888	::::	:88	***	***
	1/8 000	888	888	888	888	888		800	
Faae	1∕8∞●	888	888	888	888	888	***	888	
Eggs	1/8 •••	888	:::8	888	***	::8	::::	800	-
	1∕8 •∞•	888	:28	***	88	::::	:8:	883	:::
	1/8	888	***	888	888	888		888	-
	1/8		***	-	***	::::			

Pleiotropy

- When a gene affects more than one phenotypic trait
- example gene that codes for the protein in collagen, a substance that helps form bones is also important in the ears and eyes.
 - □ Mutations in the gene result in problems not only in bones but also in these sensory organs, which is how the gene's pleiotropic effects were discovered.
- Another example of pleiotropy occurs with sickle cell anemia. This recessive genetic disorder occurs when there is a mutation in the gene that normally encodes the red blood cell protein called hemoglobin. People with the disorder have two alleles for sickle-cell hemoglobin, so named for the sickle shape that their red blood cells take on under certain conditions such as physical exertion. The sickle-shaped red blood cells clog small blood vessels, causing multiple phenotypic effects, including stunting of physical growth, certain bone deformities, kidney failure, and strokes.

Epistasis

- When genes affect the expression of other genes
- similar to dominance, except that it occurs between different genes rather than between different alleles for the same gene

Example – Albinism

A person with albinism has virtually no pigment in the skin. The condition occurs due to an entirely different gene than the genes that encode skin color. Albinism occurs because a protein called tyrosinase, which is needed for the production of normal skin pigment, is not produced due to a gene mutation. If an individual has the albinism mutation, he or she will not have any skin pigment, regardless of the skin color genes that were inherited.

Epistasis in Coat Colors

	EB	Eb	(eB)	eb	
EB	EEBB	EEBb	EeBB	EeBb	
	black	black	black	black	
Eb	EEBb	EEbb	EeBb	Eebb	
	black	chocolate	black	chocolate	
(eB)	EeBB	EeBb	eeBB	eeBb	
	black	black	yellow	yellow	
eb	EeBb	Eebb	eeBb	eebb	
	black	chocolate	yellow	yellow	

@ Brooks/Cole, Cengage Learning