Lesson 1

ATP / ADP Energy

Saving for a Rainy Day

Suppose you earned extra money by having a job. At first, you might be tempted to spend all of the money, but then you decide to open a bank account.

- 1. What are the benefits of having a bank account?
- 2. What do you have to do if you need some of this money?
- 3. What might your body do when it has more energy than it needs?
- 4. What does your body do when it needs energy?

ATP - Adenosine Triphosphate

- Stores chemical energy released from cellular respiration
- releases energy for life processes by <u>losing</u> one phosphate, forming ADP (<u>A</u>denosine <u>Dip</u>hosphate)
- Stores energy released from food by <u>adding</u> a phosphate to ADP, forming ATP

Battery Comparison

Which molecule has more stored energy? ATP

Chemical Energy & Food

- <u>Calorie</u>: energy needed to raise the temperature of 1 gram of water by 1 degree Celsius
- Chemical energy stored in food (glucose) is
 released by <u>breaking chemical bonds</u> during cellular respiration

ATP / ADP Cycle

ATP / ADP Chemical Reactions

Video: Magic School Bus "Works Out"

Lesson 2

Aerobic Cellular Respiration

Cellular Respiration

Brainpop

Cellular Respiration

- releases energy stored in the chemical bonds of food molecules, converting it to a useable form (ATP)
- <u>May</u> or <u>may NOT</u> require oxygen (2 types)
- occurs in the mitochondria and cytoplasm

2 types of Cellular Respiration

1) Aerobic Respiration (OXYGEN required!)
 Equation:
 Glucose + Oxygen → Carbon dioxide + Water + ENERGY

 $C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O + 36 ATP$

- Yields a net gain of 36 ATP for each glucose molecule broken down
- energy is released a little at a time through a complicated set of reactions
 - 1) Glycolysis (in cytoplasm)
 - 2) Krebs Cycle

Glucose Song

3) Electron Transport Chain

Aerobic Respiration Flowchart

Lesson 3

Anaerobic Respiration / Fermentation

Strongest Student Contest!

Let's see who can hold piles of textbooks for the longest period of time!

Anaerobic Respiration

(a.k.a.Fermentation)

-<u>NO</u> oxygen required

-Produces only 2 ATP per glucose

Why do it?

 Some cells lack enzymes & organelles needed for aerobic respiration

- Ex. Prokaryotes have no mitochondria

- When oxygen supply is low some animals will do it as a last resort
 - Ex. Our muscle cells

Alcoholic Fermentation

- Produces alcohol, CO₂, and <u>2 ATP</u>
- Performed by <u>yeast (fungi)</u> (needed for baking, wine and beer making)

Lactic Acid Fermentation

- Produces lactic acid and <u>2 ATP</u>
- Performed by some bacteria & by animal cells as a last resort when lacking O₂
- Associated with muscle fatigue (burning pain)
- Important in production of cheese & yogurt

Fermentation Equations

1) Alcoholic fermentation Glucose \rightarrow Alcohol + CO₂ + 2 ATP

2) Lactic Acid fermentation Glucose \rightarrow Lactic acid + 2 ATP

Ethanol Alcohol

Respiration vs. Fermentation

Respiration

You have learned that respiration is a process that releases energy by combining oxygen with food. Respiration is not the only process that can release energy from food. A process called fermentation can also release energy but no breathing is necessary! Let's learn more about their similarities and differences.

Directions- Read the passage. Then look at the diagrams below which explain each process, and fill in the Venn Diagram on the following page.

Fermentation is a process which Respiration is a process which liberates energy from food. The process releases energy from food. A great deal is anaerobic. That means that no oxygen of energy can be released from food is required. The process is very ineffiwith this process because the food is cient because very little of the available broken down completely. All that energy in the food is released. As a result, remains is carbon dioxide and water. the waste products such as lactic acid or alcohol have a great deal of Respiration is an aerobic process. energy left in them. That means it requires oxygen. Organisms that depend on respiration cannot Fermentation can be the sole energy exist without oxygen. Most multi-celled release system for some microbes. animals depend on respiration as the Microbes are one-celled organisms that can only be seen through a microscope. principal method of releasing energy.

Lesson 4

SAT II – Aerobic Cellular Respiration

I. Which process is represented by the arrow in the diagram below?

(2) respiration

(3) regulation(4) excretion

- __2. One way human skeletal muscles and some bacteria are similar is that they both
- (1) reproduce asexually, using binary fission and regeneration
- (2) lack a nuclear membrane surrounding the chromosomes
- (3) carry out autotrophic nutrition when food becomes scarce in the environment
- (4) produce lactic acid when oxygen is not available for respiration

Information concerning a metabolic activity is shown below.

photosynthesis
 fermentation

enzyme
products + energy for metabolism

3. Substance X is most likely

(1) DNA

(3) ATP

24 (2) 2

Respiration

4. Base your answer to the following question on the diagrams below and on your knowledge of biology. The arrow below each lettered process indicates where the process takes place.

Equations (A) glucose + 2 ATP γ 2 pyruvic acid + 4 ATP (B) 2 pyruvic acid + oxygen $\frac{\gamma}{\gamma}$ carbon dioxide + water + 34 ATP

(1)

(2)

- Process A is known as
- (1) photosynthesis
- (2) fermentation

- (3) dehydration synthesis
- (4) aerobic respiration

Base your answers to questions 5 through 8 on the equations shown below.

Equations (A) glucose + 2 ATP \xrightarrow{Y} 2 pyruvic acid + 4 ATP (B) 2 pyruvic acid + oxygen \xrightarrow{Y} carbon dioxide + water + 34 ATP

- ____5. What is the combined net gain of ATP molecules at the completion of reactions A and B?(1) 36(2) 2(3) 34(4) 4
- ____6. What does letter Y represent?
 - (1) enzymes
 - (2) hemoglobin

- (3) light and chlorophyll
- (4) water and minerals
- _7. In animals, the reaction in equation B occurs in the
 - (1) lysosomes (2) chloroplasts (3)
- (3) mitochondria
- (4) ribosomes

- _8. Two molecules of ATP are needed in equation A so that
 - (1) oxygen is added to hydrogen in glucose
 - (2) energy needed to activate this reaction is provided
 - (3) energy needed to trap radiant energy is provided
 - (4) glucose is split into hydrogen and oxygen atoms

Aerobic Respiration Flowchart

SATII Material

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Process	Location	Aerobic or Anaerobic	Reactants (Inputs)	Products (Outputs)
Glycolysis "splitting alucose"	Cytoplasm	<u>An</u> aerobic: uses <u>NO</u>	Glucose	2 molecules of pyruvic acid
Video	Gytopiaoin	oxygen	2 AIP needed	NADH
		All cells can do it!	TOT activation	4 ATP (net gain of 2 ATP)
Krebs Cycle	Matrix of	Aerobic	Oxygen	CO ₂ (waste)
AKA citric	mitochondria	(needs O ₂)	2 Pyruvic Acids	8 NADH
Video				2 FADH ₂
Electron Transport Chain	Across the Cristae (mitochondria inner membrane) *In some prokaryotes, occurs across cell membrane	Aerobic (needs O ₂) (occurs in plants, animals, algae and some bacteria!)	NADH FADH ₂ Oxygen (*final electron acceptor)	The most ATP (34) Water (waste)

Process	Location	Aerobic or Anaerobic	Reactants (Inputs)	Products (Outputs)	Highlights
Glycolysis					 small energy yield but fast process
		M	RELIX		Evolved first!
Krebs		CURC			 pyruvic acid (from glycolysis) combines with accommod (made from Vitamin)
Cycle					A) forming acetyl coA
	•Citric	acid is	constant	ly broken	down and built up to
	produ	ce high	energy e	electron ca	arriers!! (NADH and FADH2
Electron Transport Chain					 creates a proton (H+) gradient across the cristae membrane chemiosmosis – uses the stored energy in proton gradient to convert ADP to ATP
•				- Mombr	 <u>ATP synthase</u> – a proton channel structure in the cristae membrane that <u>spins like a turbine</u>, as protons move through, part of molecule turns and attaches phosphates to ADP molecules to form ATP.
		21	ucture of a	Mitochor	 Oxygen (final electron and proton receptor in ETC) pulls electrons through the ETC, then combines with protons and electrons to form water (waste)