Necessary Life Functions

- Maintain boundaries
 - Separation of internal from external environment
- Movement
 - Locomotion
 - Movement of substances
- Responsiveness
 - Ability to sense changes and react

Necessary Life Functions (con't) Digestion

- Break-down and absorption of nutrients
- Metabolism
 - chemical reactions within the body
 - Produces energy
 - Makes body structures
- Excretion
 - Eliminates waste from metabolic reactions

Necessary Life Functions (con't)

- Reproduction
 - Produces future generation
- Growth
 - Increases cell size and number of cells

Survival Needs

- Nutrients
 - Chemicals for energy and cell building
 - Includes carbohydrates, proteins, lipids, vitamins, and minerals
- Oxygen
 - Required for chemical reactions such as the release of energy during cellular respiration
 - Makes up 20% of the air we breathe

Survival Needs (cont.)

- Water
 - 60–80% of body weight
 - Necessary for metabolic reactions
- Stable body temperature
 - 37 degrees C or 98 degrees F
- Atmospheric pressure
 - Must be appropriate level to allow for gas exchange

Interrelationships Among Body Systems

Homeostasis

- Homeostasis:
 - maintenance of a stable internal environment despite continuous changes
 - dynamic equilibrium
 - necessary for normal body functioning and to sustain life

Homeostatic imbalance

A disturbance in homeostasis resulting in disease or illness

Maintaining Homeostasis

- **Homeostatic Control Mechanisms**
- neural and hormonal control systems (Nervous & Endocrine Systems)
 - Receptor
 - Detects changes in the environment (stimuli)
 - Sends information to control center

Maintaining Homeostasis (cont.)

Control center

- Determines set point
- Analyzes information
- Determines appropriate response

Effector

Provides a means for response to the stimulus **Feedback Mechanisms**

- Negative feedback
 - Can shut off the original stimulus or reduce its intensity as well as turn on or increase its intensity
 - Ex. a household thermostat, most hormones

Feedback Mechanisms (cont.)

Positive feedback

- Can <u>ONLY increase</u> the original stimulus to push the variable farther
 - Ex. blood clotting and childbirth

Positive Feedback Loop

