Sex Linked Traits

X-linkage

Colorblindness Test http://enchroma.com/test/instructions/

Note:
Set your screen to the brightest setting!

- - Sex Determination

o Each human body cell (somatic cell) has 22 pairs of autosomes and one pair of sex chromosomes.
o $X X=$ female, $X Y=$ male

- Biological sex is determined at fertilization
- Male sperm cell contains either an X or a Y chromosome
- Female egg cell contains an X chromosome.
- \quad Sex Linkage
- Thomas Hunt Morgan's work with Drosophila (fruit flies) demonstrated that genes for certain traits are located on the X chromosome.
- Why fruit flies?
- Easy to breed
- New generation every 2 weeks
- Only 4 pair of chromosomes

o X-linked disorders are expressed more frequently in males than in females because males only have 1 X chromosome

X-linked diseases:

1. Hemophilia

- blood clotting disorder
- lack of clotting factor proteins

X-linked diseases:

2. Colorblindness

- inability to perceive colors in a normal fashion
- most common form is red-green colorblindness

3. Adrenoleukodystrophy (ALD)

- breakdown or loss of myelin, the fatty covering surrounding nerve cells in the brain

o X-linked genotypes: Ex. Colorblindness Females:

normal
X X
or $X^{N} X^{N}$
carrier
$X^{C} X$
affected
$X^{C} X^{C}$
or $X^{n} X^{n}$

Males:
normal
XY
or $X^{N} Y$
NO male
carriers
affected $X^{C} Y$
or $X^{n} Y$

Sex Linked Dominance Y-Linkage Mitochondrial Inheritance

 \title{Sex Linked DOMINANCE
}
 \title{
Sex Linked DOMINANCE
}

- Most sex linked traits are recessive
- Sex-linked dominance is a rare inheritance pattern
- A single abnormal gene on the X chromosome can cause a sex-linked dominant disease
o There are no "carriers"
olf the father has the abnormal X gene:
-he has the disease
(because it is
dominant)
- ALL of his daughters will inherit the disease
- NONE of his sons will have the disease

X-linked dominant, affected father

X-linked dominant, affected mother
o If the mother has the abnormal X gene:

- she has the disease
- HALF of her children (daughters and sons) will inherit the disease

o Exł Hypertrichosis: excessive hair growth - AKA Werewolf syndrome

Video - Hairiest Girl in the World

Video: hypertrichosis (Larry Gomez)

- Few genes are located on the Y chromosome (it's small)
o present only in males
o disorder would be passed on to all of a man's sons but never to daughters
- Y chromosome infertility
- Azoospermia

50 million base pairs

Short stature homeo box, Y-linked
Short stature
Leri-weill dyschondrosteosis
Langer mesomelic dysplasia
Interleukin-3 receptor, Y chromosomal
Sex-determining region Y (testis-determining)
Gonadal dysgenesis, XY type
Protocadherin 11, Y-linked
Azoospermia factors
Male infertility due to spermatogenic failure Growth control, Y-chromosome influenced
Chromodomain proteins
Retinitis pigmentosa, Y-linked

Mitochondrial Inheritance

- Mitochondria are organelles cellular respiration (energy release)
- They have their own DNA
o Transmission is from mother's egg cell to ALL offspring
o Sons and daughters are equally effected by mutations

| Mitochondrial Inheritance |
| :--- | :--- |
| Ex. Leber's Hereditary Optic Neuropathy (LHON) | - rare condition, can cause sudden painless loss of central vision

